python
主页 > 脚本 > python >

Python实现Excel文件的合并(以新冠疫情数据为例)

2022-03-19 | 秩名 | 点击:

注:本篇文章以新冠疫情数据文件的合并为例。

一、单目录下面的数据合并

将2020下的所有文件进行合并,成一个文件:

1

2

3

4

5

6

7

8

9

10

11

12

13

import requests

import json

import openpyxl

import datetime

import datetime as dt

import time

import pandas as pd

import csv

from openpyxl import load_workbook

from sqlalchemy import create_engine

import math

import os

import glob

1

2

3

4

5

6

7

8

csv_list=glob.glob(r'D:\Python\03DataAcquisition\COVID-19\2020\*.csv')

print("所有数据文件总共有%s" %len(csv_list))

for i in csv_list:

    fr=open(i,"rb").read() #除了第一个数据文件外,其他不读取表头

    with open('../output/covid19temp0314.csv','ab') as f:

        f.write(fr)

    f.close()

print('数据合成完毕!')

合并后的数据:

二、使用函数进行数据合并

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

## 02 使用函数进行数据合并

import os

import pandas as pd

# 定义函数(具有递归功能)

def mergeFile(parent,path="",pathdeep=0,filelist=[],csvdatadf=pd.DataFrame(),csvdata=pd.DataFrame()):

    fileAbsPath=os.path.join(parent,path)

    if os.path.isdir(fileAbsPath)==True:

        if(pathdeep!=0 and ('.ipynb_checkpoints' not in str(fileAbsPath))): # =0代表没有下一层目录

            print('--'+path)

        for filename2 in os.listdir(fileAbsPath):

            mergeFile(fileAbsPath,filename2,pathdeep=pathdeep+1)

    else:

        if(pathdeep==2 and path.endswith(".csv") and os.path.getsize(parent+'/'+path)>0):

            filelist.append(parent+'/'+path)

    return filelist

 

# D:\Python\03DataAcquisition\COVID-19

path=input("请输入数据文件所在目录:")

filelist=mergeFile(path)

 

filelist

 

csvdata=pd.DataFrame()

csvdatadf=pd.DataFrame()

 

for m in filelist:

    csvdata=pd.read_csv(m,encoding='utf-8-sig')

    csvdatadf=csvdatadf.append(csvdata)

# 由于2023年的数据还没有,所以不合并

(* ̄(oo) ̄)注: 这个的等待时间应该会比较长,因为一共有一百九十多万条数据。

将合并后的数据进行保存:

1

csvdatadf.to_csv("covid190314.csv",index=None,encoding='utf-8-sig')

1

2

csvdatadf=pd.read_csv("covid190314.csv",encoding='utf-8-sig')

csvdatadf.info()

读取新冠疫情在2020/0101之前的数据:

1

beforedf=pd.read_csv(r'D:\Python\03DataAcquisition\COVID-19\before20201111.csv',encoding='utf-8-sig')

 

1

beforedf.info()

将两组数据合并:

1

2

tempalldf=beforedf.append(csvdatadf)

tempalldf.head()

三、处理港澳台数据

如图所示:要将Country_Region从Hong Kong变成China。澳门和台湾也是如此:

查找有关台湾的数据:

1

2

beforedf.loc[beforedf['Country/Region']=='Taiwan']

beforedf.loc[beforedf['Country/Region'].str.contains('Taiwan')]

1

2

3

beforedf.loc[beforedf['Country/Region'].str.contains('Taiwan'),'Province/State']='Taiwan'

beforedf.loc[beforedf['Province/State']=='Taiwan','Country/Region']='China'

beforedf.loc[beforedf['Province/State']=='Taiwan']

香港的数据处理:

1

2

3

4

beforedf.loc[beforedf['Country/Region'].str.contains('Hong Kong'),'Province/State']='Hong Kong'

beforedf.loc[beforedf['Province/State']=='Hong Kong','Country/Region']='China'

afterdf.loc[afterdf['Country_Region'].str.contains('Hong Kong'),'Province_State']='Hong Kong'

afterdf.loc[afterdf['Province_State']=='Hong Kong','Country_Region']='China'

澳门的数据处理:

1

2

3

4

beforedf.loc[beforedf['Country/Region'].str.contains('Macau'),'Province/State']='Macau'

beforedf.loc[beforedf['Province/State']=='Macau','Country/Region']='China'

afterdf.loc[afterdf['Country_Region'].str.contains('Macau'),'Province_State']='Macau'

afterdf.loc[afterdf['Province_State']=='Macau','Country_Region']='China'

最终将整理好的数据进行保存:

1

2

beforedf.to_csv("beforedf0314.csv",index=None,encoding='utf-8-sig')

afterdf.to_csv("afterdf0314.csv",index=None,encoding='utf-8-sig')

原文链接:https://blog.csdn.net/wxfighting/article/details/123590669
相关文章
最新更新