C语言
主页 > 软件编程 > C语言 >

OpenCV实现视频绿幕背景替换功能

2023-02-20 | 佚名 | 点击:

1、概述

案例:使用OpenCV实现视频绿幕背景替换

算法步骤:

1.初始化VideoCapture并使用其open方法加载视频

2.while循环加读取frame capture.read(frame)

3.将frame转hsv色彩空间

4.使用inRange函数生成遮罩mask

5.使用形态学操作降噪+边缘平滑

6.使用resize将背景图片的大小搞成视频帧图片的大小

7.创建一个目标Mat用于存放融合后的图像(CV_8UC3)

8.向目标Mat中填入,指定的像素

9.循环输出Mat

2、代码示例

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

Vide_GreenCurtain_Background_Replacement::Vide_GreenCurtain_Background_Replacement(QWidget *parent)

    : MyGraphicsView{parent}

{

    this->setWindowTitle("视频绿幕背景替换");

}

  

void Vide_GreenCurtain_Background_Replacement::dropEvent(QDropEvent *event){

    const char *filePath= "/Users/yangwei/Documents/tony/opencv/课程配套代码与图片/代码与图片/01.mp4";

    showVideoGreenCurtainBackgroundReplacement(filePath);

}

  

void Vide_GreenCurtain_Background_Replacement::showVideoGreenCurtainBackgroundReplacement(const char* filePath){

    background1 = imread("/Users/yangwei/Downloads/5bd38a8bd51c7f866b7a5b397b8c1807.jpeg");//海底世界

    background2 = imread("/Users/yangwei/Downloads/3e6d749dfbec37b624c387767a04f34e.jpeg");//m78星云

    VideoCapture videoCapture;

    videoCapture.open(filePath);

    if(!videoCapture.isOpened()){//视频是否打开了

        qDebug()<<"视频打开失败";

        return;

    }

    Mat frame,hsv;

    Mat mask;

    while(videoCapture.read(frame)){

        cvtColor(frame,hsv,COLOR_BGR2HSV);//将图像转为hsv色彩空间

        inRange(hsv,Scalar(35, 43, 46), Scalar(155, 255, 255),mask);//使用inRange过滤像素并生成遮罩

        //使用形态学闭操作去除图像上的干扰白点

        Mat kernel = getStructuringElement(MORPH_RECT,Size(3,3),Point(-1,-1));

        morphologyEx(mask,mask,MORPH_CLOSE,kernel,Point(-1,-1));

        //使用形态学腐蚀操作对mask边缘进行腐蚀(去掉边缘白色)

        erode(mask,mask,kernel);

        //使用高斯模糊平滑前景与背景区域的过度(此处指的是黑白过度处)

        GaussianBlur(mask,mask,Size(3,3),0,0);

        resizeImage(frame);

        showResult(frame,mask);

        waitKey(1);

    }

}

  

/**

 * 将图像调整到指定的大小

 * @brief Vide_GreenCurtain_Background_Replacement::resizeImage

 * @param target

 */

void Vide_GreenCurtain_Background_Replacement::resizeImage(Mat &frame){

    qDebug()<<"width:"<<frame.cols<<"---->height:"<<frame.rows;

  

    cv::resize(background1,background1,frame.size());

    qDebug()<<"width:"<<background1.cols<<"---->height:"<<background1.rows;

}

  

/**

 * 填充像素输出指定的图像

 * @brief Vide_GreenCurtain_Background_Replacement::showResult

 * @param result

 */

void Vide_GreenCurtain_Background_Replacement::showResult(Mat &frame,Mat mask){

    Mat result = Mat::zeros(frame.size(),CV_8UC3);

    int width = frame.cols;

    int height = frame.rows;

    int dims = frame.channels();

    int m = 0;

    double wt = 0;

  

    int r = 0, g = 0, b = 0;

    int r1 = 0, g1 = 0, b1 = 0;

    int r2 = 0, g2 = 0, b2 = 0;

    for(int row=0;row<height;row++){

        uchar *currentImage = frame.ptr<uchar>(row);//原始帧图像的一列像素

        uchar *bgImage = background1.ptr<uchar>(row);//背景图像的一列像素

        uchar *maskImage = mask.ptr<uchar>(row);//遮罩的一列像素

        uchar *resultImage = result.ptr<uchar>(row);//最终输出结果的一列像素

        for(int col=0;col<width;col++){

            m = *maskImage++;//取出像素

            if(m==255){//背景

                *resultImage++ = *bgImage++;

                *resultImage++ = *bgImage++;

                *resultImage++ = *bgImage++;

                currentImage+=3;

            }else if(m==0){//前景

                *resultImage++ = *currentImage++;

                *resultImage++ = *currentImage++;

                *resultImage++ = *currentImage++;

                bgImage+=3;

            }else{//过度部分像素

                b1 = *resultImage++;

                g1 = *resultImage++;

                r1 = *resultImage++;

  

                b2 = *currentImage++;

                g2 = *currentImage++;

                r2 = *currentImage++;

  

                // 权重

                wt = m / 255.0;

  

                // 缓和权重

                b = b1*wt + b2*(1.0 - wt);

                g = g1*wt + g2*(1.0 - wt);

                r = r1*wt + r2*(1.0 - wt);

  

                *resultImage++ = b;

                *resultImage++ = g;

                *resultImage++ = r;

            }

  

        }

    }

    imshow("result",result);

}

原文链接:https://blog.csdn.net/m0_60259116/article/details/129100911
相关文章
最新更新