1 2 3 4 5 6 7 8 9 10 11 12 13 |
CREATE TABLE `player` ( `id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键', `player_id` varchar(256) NOT NULL COMMENT '运动员编号', `player_name` varchar(256) NOT NULL COMMENT '运动员名称', `height` int(11) NOT NULL COMMENT '身高', `weight` int(11) NOT NULL COMMENT '体重', `type` varchar(256) DEFAULT '0' COMMENT '球员类型', `game_performance` text COMMENT '最近一场比赛表现', PRIMARY KEY (`id`), KEY `idx_name_height_weight` (`player_name`,`height`,`weight`), KEY `idx_type` (`type`), KEY `idx_height` (`height`) ) ENGINE=InnoDB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8 |
以上数据表声明三个索引:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
@SpringBootTest(classes = TestApplication.class) @RunWith(SpringJUnit4ClassRunner.class) public class PlayerServiceTest {
@Resource private PlayerRepository playerRepository;
@Test public void initBigData() { for (int i = 0; i < 1000000; i++) { PlayerEntity entity = new PlayerEntity(); entity.setPlayerId(UUID.randomUUID().toString()); entity.setPlayerName("球员_" + System.currentTimeMillis()); entity.setType("0"); entity.setWeight(150); entity.setHeight(188); entity.setGamePerformance("{\"runDistance\":8900.0,\"passSuccess\":80.12,\"scoreNum\":3}"); playerRepository.insert(entity); } } } |
执行计划中访问类型是重要分析指标:
Extra表示执行计划扩展信息:
本章节介绍索引失效十种场景:
1 |
explain select * from player where type = 0 |
数据表定义type字段为varchar类型,查询必须使用相同类型:
1 |
explain select * from player where height + 1 > 189 |
1 |
explain select * from player where height > 188 |
MySQL发现如果使用索引性能低于全表扫描则放弃使用索引。例如在表中100万条数据height字段值全部是188,所以执行如下语句时放弃使用索引:
1 |
explain select * from player where height > 187 |
调整查询条件值:
1 |
explain select * from player where height > 188 |
强制指定索引,这种方法不一定可以提升性能:
避免出现3.3章节失效问题此处修改一条数据:
1 |
update player set player_name = '测试球员' where id = 1 |
1 |
explain select * from player where player_name like '%测试' |
1 |
explain select * from player where player_name like '%测试%' |
1 |
explain select * from player where player_name like '测试%' |
type有索引,weight无索引:
1 |
explain select * from player where type = '0' or weight = 150 |
weight新增索引,union拼装查询数据
1 2 3 4 |
explain select * from player where type = '0' union select * from player where weight = 150 |
Using index condition表示使用索引,但是需要回表查询
1 |
explain select * from player where player_name like '测试%' |
覆盖索引含义是查询时索引列完全包含查询列,查询过程无须回表(需要在同一棵索引树)性能得到提升。Using Index; Using where表示使用覆盖索引并且用where过滤查询结果:
1 |
explain select id,player_name,height,weight from player where player_name like '测试%' |
联合索引idx_name_height_weight完整使用key_len=778:
1 |
explain select * from player where player_name = '球员_1682577684751' and height = 188 and weight = 150 |
weight不在查询条件,所以只用到idx_name_height,所以key_len= 774:
1 |
explain select * from player where player_name = '球员_1682577684751' and height = 188 |
height不在查询条件,所以只用到idx_name,所以key_len= 770:
1 |
explain select * from player where player_name = '球员_1682577684751' and weight = 150 |
height非等值匹配,所以只用到idx_name_height,所以key_length=774:
1 |
explain select * from player where player_name='球员_1682577684751' and height > 188 and weight = 150 |
player_name最左索引不在查询条件,全表扫描
1 |
explain select * from player where weight = 150 |
本文第一进行测试数据准备,第二介绍执行计划相关知识,第三介绍索引失效10种场景:查询类型错误,索引列参与运算,错误使用通配符,未用到覆盖索引,OR连接无索引字段,MySQL放弃使用索引,联合索引中索引不完整,索引中断,非等值匹配,最左索引缺失。