拼接张量:torch.cat() 、torch.stack()
在给定维度上对输入的张量序列 seq 进行连接操作
举个例子:
>>> import torch
>>> x = torch.randn(2, 3)
>>> x
tensor([[-0.1997, -0.6900, 0.7039],
[ 0.0268, -1.0140, -2.9764]])
>>> torch.cat((x, x, x), 0) # 在 0 维(纵向)进行拼接
tensor([[-0.1997, -0.6900, 0.7039],
[ 0.0268, -1.0140, -2.9764],
[-0.1997, -0.6900, 0.7039],
[ 0.0268, -1.0140, -2.9764],
[-0.1997, -0.6900, 0.7039],
[ 0.0268, -1.0140, -2.9764]])
>>> torch.cat((x, x, x), 1) # 在 1 维(横向)进行拼接
tensor([[-0.1997, -0.6900, 0.7039, -0.1997, -0.6900, 0.7039, -0.1997, -0.6900,
0.7039],
[ 0.0268, -1.0140, -2.9764, 0.0268, -1.0140, -2.9764, 0.0268, -1.0140,
-2.9764]])
>>> y1 = torch.randn(5, 3, 6)
>>> y2 = torch.randn(5, 3, 6)
>>> torch.cat([y1, y2], 2).size()
torch.Size([5, 3, 12])
>>> torch.cat([y1, y2], 1).size()
torch.Size([5, 6, 6])
|
沿着一个新维度对输入张量序列进行连接。 序列中所有的张量都应该为相同形状
举个例子:
>>> x1 = torch.randn(2, 3)
>>> x2 = torch.randn(2, 3)
>>> torch.stack((x1, x2), 0).size() # 在 0 维插入一个维度,进行区分拼接
torch.Size([2, 2, 3])
>>> torch.stack((x1, x2), 1).size() # 在 1 维插入一个维度,进行组合拼接
torch.Size([2, 2, 3])
>>> torch.stack((x1, x2), 2).size()
torch.Size([2, 3, 2])
>>> torch.stack((x1, x2), 0)
tensor([[[-0.3499, -0.6124, 1.4332],
[ 0.1516, -1.5439, -0.1758]],
[[-0.4678, -1.1430, -0.5279],
[-0.4917, -0.6504, 2.2512]]])
>>> torch.stack((x1, x2), 1)
tensor([[[-0.3499, -0.6124, 1.4332],
[-0.4678, -1.1430, -0.5279]],
[[ 0.1516, -1.5439, -0.1758],
[-0.4917, -0.6504, 2.2512]]])
>>> torch.stack((x1, x2), 2)
tensor([[[-0.3499, -0.4678],
[-0.6124, -1.1430],
[ 1.4332, -0.5279]],
[[ 0.1516, -0.4917],
[-1.5439, -0.6504],
[-0.1758, 2.2512]]])
|
将输入张量分割成相等形状的 chunks(如果可分)。 如果沿指定维的张量形状大小不能被 split_size 整分, 则最后一个分块会小于其它分块。
举个例子:
>>> x = torch.randn(3, 10, 6) >>> a, b, c = x.split(1, 0) # 在 0 维进行间隔维 1 的拆分 >>> a.size(), b.size(), c.size() (torch.Size([1, 10, 6]), torch.Size([1, 10, 6]), torch.Size([1, 10, 6])) >>> d, e = x.split(2, 0) # 在 0 维进行间隔维 2 的拆分 >>> d.size(), e.size() (torch.Size([2, 10, 6]), torch.Size([1, 10, 6])) |
在给定维度(轴)上将输入张量进行分块儿
直接用上面的数据来举个例子:
>>> l, m, n = x.chunk(3, 0) # 在 0 维上拆分成 3 份 >>> l.size(), m.size(), n.size() (torch.Size([1, 10, 6]), torch.Size([1, 10, 6]), torch.Size([1, 10, 6])) >>> u, v = x.chunk(2, 0) # 在 0 维上拆分成 2 份 >>> u.size(), v.size() (torch.Size([2, 10, 6]), torch.Size([1, 10, 6])) |