torch.diag是PyTorch中的一个函数,用于从给定的矩阵中提取对角线元素,或者构造一个以给定对角线元素为值的对角矩阵。这个函数对于矩阵分解和转换等操作非常重要。
如果输入是一个向量(1D张量),torch.diag会返回一个以该向量为对角线元素的2D方阵。如果输入是一个矩阵(2D张量),则返回一个包含输入矩阵对角线元素的1D张量。
torch.diag还允许你指定对角线的位置,通过参数diagonal实现。如果diagonal=0,则为主对角线;如果diagonal>0,则为位于主对角线之上的对角线;如果diagonal<0,则为位于主对角线之下的对角线。
语法:
举例一:
1 2 3 4 5 |
import torch
data = torch.tensor([1,2,3,4]) data_two = torch.diag(data,0) print(data_two) |
结果:
举例二:
1 2 3 4 5 |
import torch
data = torch.tensor(float('inf')).cuda().repeat(3) data_two = torch.diag(data,0) print(data_two) |
结果:
1 2 3 4 5 6 7 8 9 |
import torch a = torch.randn(3, 3) print(a) tensor([[ 0.7594, 0.8073, -0.1344], [-1.7335, -0.4356, -0.0055], [ 1.8326, 0.3900, -0.9933]]) diag = torch.diag(a) # 取 a 对角线元素,输出为 1*3 print(diag) tensor([ 0.7594, -0.4356, -0.9933]) |
1 2 3 4 5 6 7 |
import torch
tensor([ 0.7594, -0.4356, -0.9933]) a_diag = torch.diag_embed(diag) # 由 diag 变为三维 3*3 tensor([[ 0.7594, 0.0000, 0.0000], [ 0.0000, -0.4356, 0.0000], [ 0.0000, 0.0000, -0.9933]]) |