ffill(forward fill)是Pandas库中DataFrame和Series对象的一个函数,用于填充缺失值(NaN)。它通过使用前面的有效值来填充后续的缺失值,也被称为"前向填充"。
1 |
DataFrame.ffill(axis=None, inplace=False, limit=None, downcast=None) |
主要参数:
代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
import pandas as pd import numpy as np
# 创建一个包含NaN的DataFrame df = pd.DataFrame({ 'A': [1, 2, np.nan, np.nan, 5], 'B': [np.nan, 2, 3, np.nan, 5], 'C': [1, 2, 3, 4, 5] })
print("原始DataFrame:") print(df)
print("\n使用ffill()后的DataFrame:") print(df.ffill()) |
输出:
原始DataFrame:
A B C
0 1.0 NaN 1
1 2.0 2.0 2
2 NaN 3.0 3
3 NaN NaN 4
4 5.0 5.0 5使用ffill()后的DataFrame:
A B C
0 1.0 NaN 1
1 2.0 2.0 2
2 2.0 3.0 3
3 2.0 3.0 4
4 5.0 5.0 5
代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
import pandas as pd import numpy as np
df = pd.DataFrame({ 'A': [1, 2, np.nan, np.nan, 5], 'B': [np.nan, 2, 3, np.nan, 5], 'C': [1, 2, 3, 4, 5] })
print("原始DataFrame:") print(df)
print("\n使用ffill(axis=1)后的DataFrame:") print(df.ffill(axis=1)) |
输出:
原始DataFrame:
A B C
0 1.0 NaN 1
1 2.0 2.0 2
2 NaN 3.0 3
3 NaN NaN 4
4 5.0 5.0 5使用ffill(axis=1)后的DataFrame:
A B C
0 1.0 1.0 1.0
1 2.0 2.0 2.0
2 NaN 3.0 3.0
3 NaN NaN 4.0
4 5.0 5.0 5.0
代码:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
import pandas as pd import numpy as np
df = pd.DataFrame({ 'A': [1, np.nan, np.nan, np.nan, 5], 'B': [np.nan, 2, np.nan, np.nan, 5], 'C': [1, 2, 3, 4, 5] })
print("原始DataFrame:") print(df)
print("\n使用ffill(limit=1)后的DataFrame:") print(df.ffill(limit=1)) |
输出:
原始DataFrame:
A B C
0 1.0 NaN 1
1 NaN 2.0 2
2 NaN NaN 3
3 NaN NaN 4
4 5.0 5.0 5使用ffill(limit=1)后的DataFrame:
A B C
0 1.0 NaN 1
1 1.0 2.0 2
2 NaN 2.0 3
3 NaN NaN 4
4 5.0 5.0 5