| import os import random import cv2 import numpy as np from PIL import Image, ImageEnhance, ImageOps   # 定义各种数据增强方法 def random_rotate(image, angle_range=(-30, 30)):     angle = random.uniform(angle_range[0], angle_range[1])     (h, w) = image.shape[:2]     center = (w // 2, h // 2)     M = cv2.getRotationMatrix2D(center, angle, 1.0)     rotated = cv2.warpAffine(image, M, (w, h), borderMode=cv2.BORDER_REFLECT)     return rotated   def random_translate(image, translate_range=(-50, 50)):     tx = random.randint(translate_range[0], translate_range[1])     ty = random.randint(translate_range[0], translate_range[1])     (h, w) = image.shape[:2]     M = np.float32([[1, 0, tx], [0, 1, ty]])     translated = cv2.warpAffine(image, M, (w, h), borderMode=cv2.BORDER_REFLECT)     return translated   def random_flip(image):     flip_code = random.choice([-1, 0, 1])     flipped = cv2.flip(image, flip_code)     return flipped   def random_scale(image, scale_range=(0.8, 1.2)):     scale = random.uniform(scale_range[0], scale_range[1])     (h, w) = image.shape[:2]     new_dim = (int(w * scale), int(h * scale))     scaled = cv2.resize(image, new_dim, interpolation=cv2.INTER_LINEAR)     return scaled   def random_crop(image, crop_size=(224, 224)):     (h, w) = image.shape[:2]     if crop_size[0] > h or crop_size[1] > w:         # 当裁剪尺寸大于图像尺寸时,抛出异常或调整裁剪尺寸         raise ValueError("Crop size is larger than image size.")     top = random.randint(0, h - crop_size[0])     left = random.randint(0, w - crop_size[1])     cropped = image[top:top+crop_size[0], left:left+crop_size[1]]     return cropped   def random_color_jitter(image):     pil_image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))     color_jitter = ImageEnhance.Color(pil_image).enhance(random.uniform(0.6, 1.4))     contrast_jitter = ImageEnhance.Contrast(color_jitter).enhance(random.uniform(0.5, 1.5))     brightness_jitter = ImageEnhance.Brightness(contrast_jitter).enhance(random.uniform(0.6, 1.4))     sharpness_jitter = ImageEnhance.Sharpness(brightness_jitter).enhance(random.uniform(0.6, 1.4))     jittered = cv2.cvtColor(np.array(sharpness_jitter), cv2.COLOR_RGB2BGR)     return jittered   def random_add_noise(image):     row, col, ch = image.shape     mean = 0     var = 0.1     sigma = var ** 0.5     gauss = np.random.normal(mean, sigma, (row, col, ch))     gauss = gauss.reshape(row, col, ch)     noisy = image + gauss     return np.clip(noisy, 0, 255).astype(np.uint8)   # 数据增强主函数 def augment_random_images(src_folder, dst_folder, num_images_to_select, num_augmentations_per_image):     if not os.path.exists(dst_folder):         os.makedirs(dst_folder)       # 获取所有图像文件名     all_filenames = [f for f in os.listdir(src_folder) if f.lower().endswith(('.png', '.jpg', '.jpeg'))]       # 如果选择的图像数量大于总图像数量,则只处理全部图像     num_images_to_process = min(num_images_to_select, len(all_filenames))       # 随机选择图像     selected_filenames = random.sample(all_filenames, num_images_to_process)       # 创建一个增强方法列表     augmentation_methods = [         random_rotate,         #random_translate,         random_flip,         random_scale,         #random_crop,         random_color_jitter,         random_add_noise     ]       for filename in selected_filenames:         img_path = os.path.join(src_folder, filename)         image = cv2.imread(img_path)           for i in range(num_augmentations_per_image):             # 随机选择一种增强方法             augmentation_method = random.choice(augmentation_methods)                           # 应用选中的增强方法             augmented_img = augmentation_method(image)               # 保存增强后的图像             base_name, ext = os.path.splitext(filename)             save_path = os.path.join(dst_folder, f"{base_name}_aug_{i}{ext}")             cv2.imwrite(save_path, augmented_img)   if __name__ == "__main__":     src_folder = 'path/to/source/folder'  # 替换为你的源文件夹路径     dst_folder = 'path/to/destination/folder'  # 替换为你要保存增强图像的文件夹路径     num_images_to_select = 10  # 从源文件夹中随机选择的图像数量     num_augmentations_per_image = 5  # 每张图像生成的增强图像数量       augment_random_images(src_folder, dst_folder, num_images_to_select, num_augmentations_per_image)     print(f"图像增强完成,增强后的图像已保存到 {dst_folder}") |