python
主页 > 脚本 > python >

Go数据结构之堆排序示例

2022-08-27 | 佚名 | 点击:

堆排序

堆排序是一种树形选择排序算法。

简单选择排序算法每次选择一个关键字最小的记录需要 O(n) 的时间,而堆排序选择一个关键字最小的记录需要 O(nlogn)的时间。

堆可以看作一棵完全二叉树的顺序存储结构。

在这棵完全二叉树中,如果每个节点的值都大于等于左边孩子的值,称为大根堆(最大堆、又叫大顶堆)。如果每个节点的值都小于等于左边孩子的值,称为小根堆(最小堆,小顶堆)。

可以,用数学符号表示如下:

堆排序过程

假如,{1, 7, 9, 2, 4, 6, 3, 5, 8} 建堆,然后进行堆排序输出。

动画显示

首先根据无序序列 {1, 7, 9, 2, 4, 6, 3, 5, 8} 按照完全二叉树的顺序构建一棵完全二叉树,如图:

然后从最后一个分支节点 n/2开始调整堆,这里 9 / 2 = 4:

然后从 n/2−1 开始调整,即序号 3 开始调整,接着从 n/2-2 执行调整操作,如图所示:

一直重复到序号为 1 的节点:

最终通过此次调整堆,得到新的堆为 [9, 8, 6, 7, 4, 1, 3, 5, 2] ,得到新的堆后开始堆排序过程

开始堆排序

构建完初始堆后,此时,我们可以进入堆排序,从上面的方法中,

我们可以已知我们构建的最大堆的堆顶是最大的记录,可以可以将堆顶交换到最后一个元素的位置,然后执行堆顶下沉操作,然后再执行堆调整操作(新的堆顶也是最大值),直到剩余一个节点,得到一个有序序列。

此时,我们又可以进行堆调整操作,如下图:

堆调整完毕,开始把新的堆顶 8 和最后一个记录 2 进行交换,然后将堆顶下沉,调整为堆,如下图所示:

从此我们得到新的堆顶 7 ,然后把 7 跟最后一个元素 3 进行交换,7 下沉,然后堆调整,慢慢得到堆顶 6 和 堆顶5,如图所示:

然后是 3 下沉:

最后,堆顶 2 与最后一个记录 1 进行交换,只剩一个节点,堆排序结束,如下图所示:

我们得到的新的序列按序号读取数据,就是一个有序序列。

代码实现

最后,我们用代码来检验一下我们的动画过程是否正确,如下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

package main

import "fmt"

// 调整堆

func adjustHeap(array []int, currentIndex int, maxLength int) {

    var noLeafValue = array[currentIndex] // 当前非叶子节点

    // j 指向左孩子

    // 当前非叶子节点的左节点为:2 * currentIndex + 1

    for j := 2*currentIndex + 1; j <= maxLength; j = currentIndex*2 + 1 {

        if j < maxLength && array[j] < array[j+1] { // 如果有右孩子,且左孩子比右孩子小

            j++ // j 指向右孩子

        }

        if noLeafValue >= array[j] {

            break // 非叶子节点大于孩子节点,跳过不交换

        }

        array[currentIndex] = array[j] // 移动到当前节点的父节点

        currentIndex = j               // j 指向交换后的新位置,继续向下比较

    }

    array[currentIndex] = noLeafValue // 放在合适的位置

}

// 初始化堆

func createHeap(array []int, length int) {

    // 建堆

    for i := length / 2; i >= 0; i-- {

        adjustHeap(array, i, length-1)

    }

}

func heapSort(array []int, length int) {

    for i := length - 1; i > 0; i-- {

        array[0], array[i] = array[i], array[0]

        adjustHeap(array, 0, i-1)

    }

}

func main() {

    var unsorted = []int{1, 7, 9, 2, 4, 6, 3, 5, 8}

    var length = len(unsorted)

    fmt.Println("建堆之前:")

    for i := 0; i < length; i++ {

        fmt.Printf("%d,", unsorted[i])

    }

    fmt.Println()

    fmt.Println("建堆之后:")

    createHeap(unsorted, length)

    for i := 0; i < length; i++ {

        fmt.Printf("%d,", unsorted[i])

    }

    fmt.Printf("\n堆排序之后: \n")

    heapSort(unsorted, length)

    for i := 0; i < length; i++ {

        fmt.Printf("%d,", unsorted[i])

    }

}

运行结果:

[Running] go run "e:\Coding Workspaces\LearningGoTheEasiestWay\Go 数据结构\堆排序\main.go"
建堆之前:
1,7,9,2,4,6,3,5,8,
建堆之后:
9,8,6,7,4,1,3,5,2,
堆排序之后: 
1,2,3,4,5,6,7,8,9,

可以看到,创建堆的结果 9,8,6,7,4,1,3,5,2 和排序结果 1,2,3,4,5,6,7,8,9 都是和我们图中的堆一样,所以说图看懂了代码也就变得有意思了。

总结

总结一下堆排序的复杂度:

时间复杂度:堆排序主要耗费时间在初始堆和反复调整堆上,所以时间复杂度为 O(nlogn)O(nlogn)O(nlogn)

空间复杂度:交换记录需要一个辅助空间,所以空间复杂度为 O(1)O(1)O(1)

稳定性:堆排序多次交换关键字,可能会发生相等关键字排序前后位置不一样的情况,所以不稳定

推荐大家都自己画图体验一下堆排序的过程,这中间设计除了涉及到算法的精妙,也能体会到二叉树的遍历过程

原文链接:https://juejin.cn/post/7054927088083533838
相关文章
最新更新